

DATASHEET

Серия MDRI

MDRI15, MDRI25

Миниатюрные DC/DC преобразователи для промышленных сфер

1. Описание

Универсальные изолированные импульсные DC/DC преобразователи повышенной надежности с увеличенным ресурсом эксплуатации для использования в аппаратуре промышленного назначения.

Использование герметизирующей заливки обеспечивает надежную защиту от внешних воздействующих факторов и позволяет использовать модули в широких климатических условиях.

Каждая партия изделий проходит проверку на соответствие нескольким десяткам электрических параметров, а также подвергается специальным видам температурных и предельных испытаний.

1.1. Разработаны в соответствии

- Климатическое исполнение, стойкость к ВВФ «02.1»[1] по ГОСТ 15150
- Контроль стойкости к ВВФ ГОСТ 20.57.406
- Прочность к изоляции, сопротивление изоляции гост 12997
- Требования к безопасности EN 60950

1.2. Особенности

- Гарантия 3 года
- Форм-фактор DIP-24
- Выходной ток до 6 А
- Рабочая температура корпуса -40...+105 °C
- Низкопрофильная 10,2 мм конструкция
- Защита от К3 и перенапряжения
- Дистанционное вкл/выкл
- Пиковый КПД 91%
- Герметизирующая заливка

1.3. Дополнительная информация

1.3.1. Описание на сайте производителя

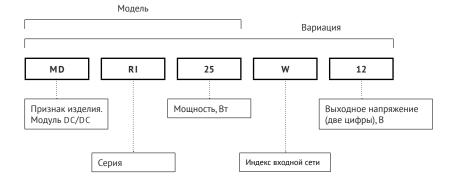
www.aedon.ru/catalog/dcdc/series/29

1.3.2. Отдел продаж

8 800 333 81 43; mail@aedon.ru

1.3.3. Техническая поддержка

techsup@aedon.ru


2. Содержание

1. Описание	1
1.1. Разработаны в соответствии	
1.2. Особенности	
1.3. Дополнительная информация	1
1.3.1. Описание на сайте производителя	
1.3.2. Отдел продаж	
1.3.3. Техническая поддержка	
2. Содержание	
3. Условное обозначение модулей	
4. Характеристики преобразователей	
4.1. Общие характеристики	3
4.2. Входные характеристики	
4.3. Выходные характеристики	
4.4. Защитные функции	4
4.5. Конструктивные параметры	

5. Сервисные функции	
5.1. Топология	
5.2. Схема включения	
6. Результаты испытаний	6
6.1. Зависимость КПД от нагрузки	6
6.1.1. MDRI15	6
6.1.2. MDR125	6
6.2. Осциллограммы	
6.2.1. MDRI15B05	
6.2.2. MDRI15W24	8
6.2.3. MDRI25B12	
6.2.4. MDR125W3,3	10
7. Габаритные схемы	11

3. Условное обозначение модулей

Для получения дополнительной информации свяжитесь с отделом продаж по телефону 8 800 333 81 43 или электронной почте mail@aedon.ru

4. Характеристики преобразователей

Все характеристики приведены для $HKY^{[1]}$, $U_{BX.HOM}$, $I_{BЫX.HOM}$, если не указано иначе. Обращаем внимание, что информация в настоящем документе не является полной. Более подробная информация (дополнительные требования, типовые схемы включения, правила эксплуатации и т. п.) приведена в технических условиях, а также в руководящих технических материалах на сайте www.aedon.ru в разделе «Документация».

4.1. Общие характеристики

Параметр	Обозначение	Условия	Значение	Размерность
Рабочая температура корпуса	Ткорп		-40+105	°C
Рабочая температура окружающей среды	T _{OKP}	При соблюдении температуры корпуса	-40+85	°C
Температура хранения			-50+110	°C
Частота преобразования			350-450	кГц
Входная ёмкость, внешняя		P _{BЫX} =15 BT	22 тантал. + 4,7 керам.	мкФ
		P _{BЫX} =25 BT	47 тантал. + 10 керам.	мкФ
Прочность изоляции @ 60 с		Вход/выход, вход/корпус, выход/корпус	=1500	В
Сопротивление изоляции @ =500 В		Вход/выход, вход/корпус, выход/корпус	не менее 1	ГОм
Тепловое сопротивление корпуса			21	°С/Вт
Дистанционное вкл/выкл			01 В или соединение выводов ВКЛ и -ВХ, I≤5 мА	
MTBF		Т _{КОРП} =75°C, Р=70%	585 000	Ч
Срок гарантии			3	лет

4.2. Входные характеристики

Параметр	Обозначение	Условия	Значение	Размерность
Номинальное входное напряжение	$U_{BX.HOM}$	Индекс «В»	24	В
		Индекс «W»	48	В
Диапазон входного напряжения		U _{BX.HOM} =24 B	936	В
		U _{BX.HOM} =48 B	1875	В
Переходное отклонение U _{BX}		U _{вх.ном} =24 В @ 1 с	840	В
		U _{вх.ном} =48 В @ 1 с	1680	В

4.3. Выходные характеристики

Параметр	Обозначение	Условия	Значение	Размерность
Мощность	P _{BыX}		15; 25	Вт
Типовой коэффициент полезного	кпд	U _{BX} =24 B, U _{BЫX} =12 B	91	%
действия		U _{BX} =48 B, U _{BЫX} =12 B	89	%
Количество выходных каналов			1	
Номинальное выходное напряжение	U _{вых.ном}	Р _{ВЫХ} =15 Вт	3,3; 5; 9; 12; 15; 24; 48	В
		Р _{ВЫХ} =25 Вт	5; 9; 12; 15; 24; 48	В
Минимальный выходной ток	І _{вых.мин}		0	A
Максимальный выходной ток	І _{вых.макс}	Р _{ВЫХ} =15 Вт	4,55	A
		Р _{ВЫХ} =25 Вт	6	A
Подстройка выходного напряжения от U _{вых.ном}			мин. ±10	%

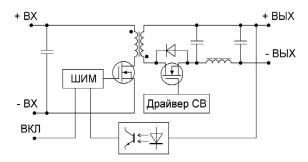
^[1] Нормальные климатические условия, T_{OKP} =25 °C.

Параметр	Обозначение	Условия	Значение		Размерность
Установившееся отклонение выходного напряжения, от $U_{BblX.HOM}$		U _{BX.HOM} , I _{BЫХ.МАКС} , НКУ	макс. ±1		%
Нестабильность выходного напряжения, от $U_{BbIX.HOM}$		При плавном изменении U _{BX} , в диапазоне установившегося значения	макс. ±0,5		%
		При плавном изменении выходного тока, в диапазоне 0,051×I _{вых.макс}	макс. ±0,5		%
		Температурная нестабильность	макс. ±2		%
		Временная нестабильность	макс. ±0,5		%
		Суммарная нестабильность во всем диа- пазоне входных напряжений, выходных токов и температур окружающей среды	макс. ±4		%
Размах пульсаций (пик-пик) от $U_{B \text{bix.HOM}}$	U_{P-P}	U _{BыX} ≤5 B	<50		мВ
		U _{BыX} >5 B	<1		%
Максимальная суммарная ёмкость конденсаторов на выходе модуля	С _{вых.макс}	U _{BыX} =3,3 B U _{BыX} =5 B U _{BыX} =9 B U _{BыX} =12 B U _{BыX} =15 B U _{BыX} =24 B U _{BыX} =48 B	10000 4500 1400 850 580 220 50 Рвых=15 Вт	- 5400 2500 1400 1000 360 85 Р _{вых} =25 Вт	мкФ
Время включения	t _{BKЛ}	I _{ВЫХ.МАКС} + С _{ВЫХ.МАКС} , U _{ВХ.НОМ}	<0,05		С
Переходное отклонение выходного напряжения от U _{НОМ}		При изменении $U_{BX,HOM}$ до $1,4 \times U_{BX,HOM};$ в пределах $(0,751) \times I_{BMX,MAKC};$ длительность фронта >100 мкс.	макс. ±5		%

4.4. Защитные функции

Параметры являются справочными и не могут быть использованы при долговременной работе, превышении максимального выходного тока, при работе вне диапазона рабочих температур, при работе модуля с выходными напряжениями сверх диапазона регулировки.

Параметр	Обозначение	Условия	Значение	Размерность
Защита от короткого замыкания		U _{BЫX} ≤5 B	3 I _{BЫХ.МАКС}	
		U _{BЫX} >5 B	2 I _{BЫХ.МАКС}	
Защита от перенапряжения на выходе			1,3 U _{вых.ном}	
Синусоидальная вибрация			102000 Гц, 200 (20) м/с 2 (g), 0,3 мм	
Устойчивость к пыли			есть	
Устойчивость к соляному туману			есть	
Устойчивость к влаге		98% при Т _{ОКР} =35°С	есть	
		·		


4.5. Конструктивные параметры

Параметр	Обозначение	Условия	Значение	Размерность
Форм-фактор			DIP-24	
Материал корпуса			алюминий	
Материал покрытия			Ан. Окс.	
Материал выводов			бронза	
Macca			макс. 19	г
Температура пайки		5 c	260	°C
Габаритные размеры		Без учета выводов	макс. 31,8×20,3×10,2	ММ

5. Сервисные функции

5.1. Топология

Puc. 1. Топология MDRI15, MDRI25.

5.2. Схема включения

C1, C2 — смотри «Входная ёмкость, внешняя» на странице 3.

С3, С4 — смотри «Максимальная суммарная ёмкость конденсаторов на выходе» страница 4.

R_н — нагрузка.

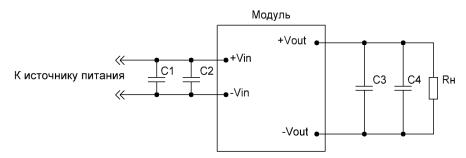


Рис. 2. Типовая схема включения MDRI15, MDRI25.

6. Результаты испытаний

6.1. Зависимость КПД от нагрузки

6.1.1. MDRI15

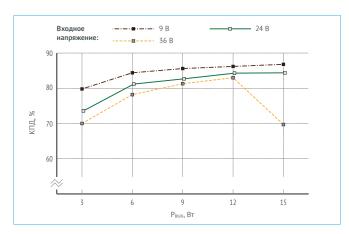


Рис. 3. КПД для MDRI15B05.

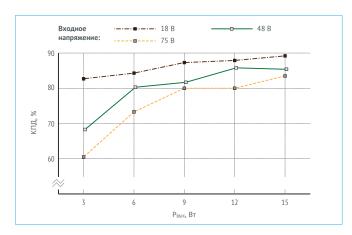


Рис. 4. КПД для MDRI15W24.

6.1.2. MDRI25

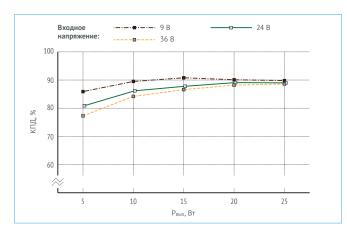


Рис. 5. КПД для MDRI25B12.

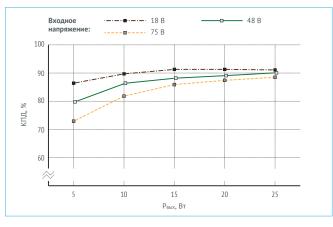


Рис. 7. КПД для MDRI25W12.

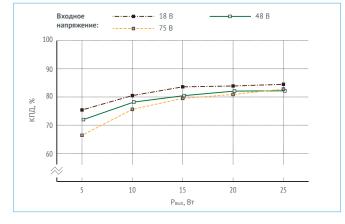


Рис. 6. КПД для MDR125W3,3.

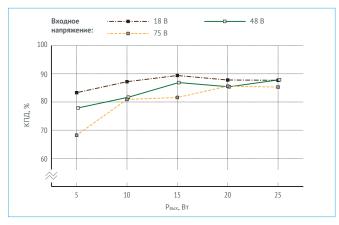


Рис. 8. КПД для MDR125W24.

6.2. Осциллограммы

6.2.1. MDRI15B05

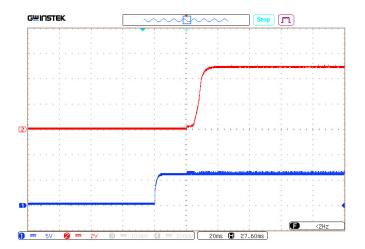


Рис. 9. Установление $U_{BыX.HOM}$ с момента подачи ДУ (соединение выводов «ВКЛ» и «-ВХ»).

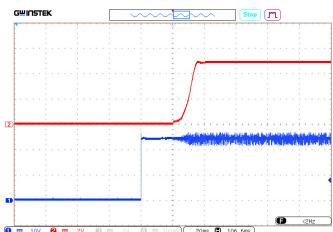


Рис. 11. Установление $U_{BЫX.HOM}$ с момента подачи $U_{BX.HOM}$.

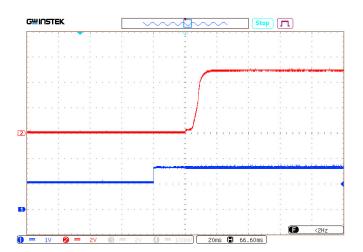


Рис. 10. Установление $U_{Bых. HOM}$ с момента подачи ДУ (управляющий сигнал).

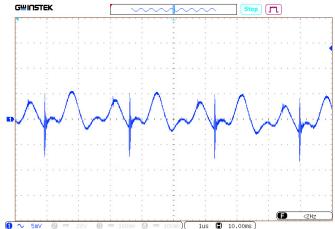
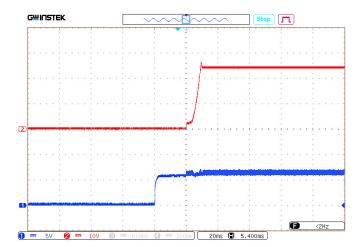
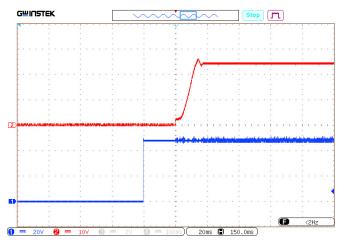
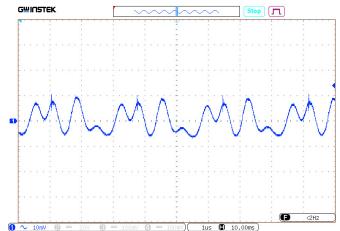


Рис. 12. Осциллограмма пульсаций $U_{Bых. HOM}$.

6.2.2. MDRI15W24


Рис. 13. Установление $U_{BbIX.HOM}$ с момента подачи ДУ (соединение выводов «ВКЛ» и «-ВХ»).

Puc.~15.~ Установление $U_{BЫX.HOM}$ с момента подачи $U_{BX.HOM}$.

Рис. 14. Установление $U_{BЫX.HOM}$ с момента подачи ДУ (управляющий сигнал).

 $Puc.~16.~ Пульсации~ U_{BЫX.HOM}.$

6.2.3. MDRI25B12

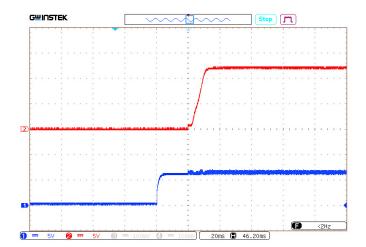
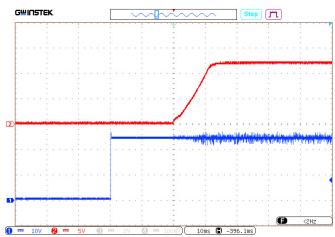



Рис. 17. Установление $U_{B I X. HOM}$ с момента подачи ДУ (соединение выводов «ВКЛ» и «-ВХ»).

Puc.~19.~Установление $U_{Bых.HOM}$ с момента подачи $U_{BX.HOM}.$

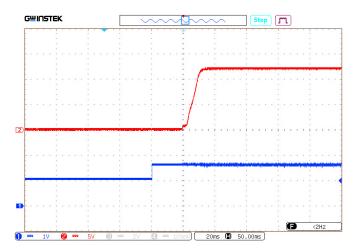


Рис. 18. Установление $U_{BЫX.HOM}$ с момента подачи ДУ (управляющий сигнал).

Рис. 20. Пульсации $U_{BЫX.HOM}$.

6.2.4. MDRI25W3,3

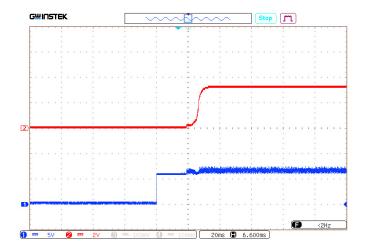
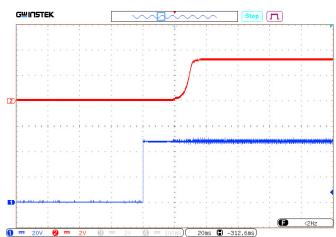



Рис. 21. Установление $U_{BbIX.HOM}$ с момента подачи ДУ (соединение выводов «ВКЛ» и «-ВХ»).

Puc.~23.~Установление $U_{Bых.HOM}$ с момента подачи $U_{BX.HOM}.$

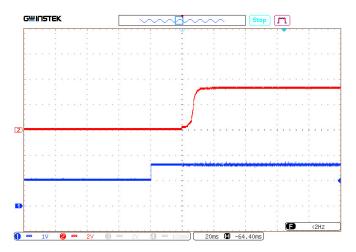
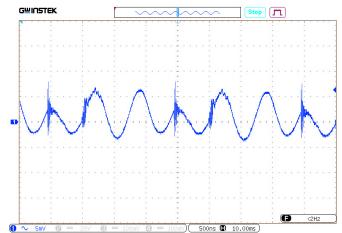
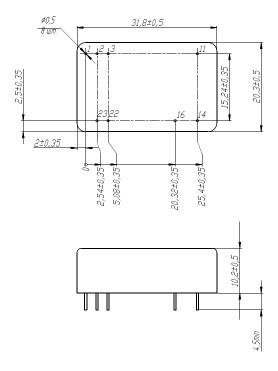



Рис. 22. Установление $U_{BЫX.HOM}$ с момента подачи ДУ (управляющий сигнал).



 $Puc. 24. Пульсации U_{BЫX.HOM}.$

7. Габаритные схемы

Вывод	1	2, 3	11	14	16	22, 23	
Назначение	Дист. вкл/выкл	-BX	PEF	+BЫX	-ВЫХ	+BX	

Puc. 25. Исполнение MDRI15, MDRI25.

www.aedon.ru

mail@aedon.ru

Компания «АЕДОН» — ведущий российский разработчик и производитель DC/DC преобразователей и систем электропитания для ответственных сфер применения.

Россия, 394026, Воронеж, ул. Дружинников, 56 8 800 333 81 43 Россия, 129626, Москва, пр-т Мира, 104 +7 499 450-29-05, доб. 321

Даташит распространяется на следующие модели: MDRI15B3,3; MDRI15B05; MDRI15B05; MDRI15B12; MDRI15B12; MDRI15B42; MDRI15B48; MDRI15B