буквенно-цифровой 8 символов 2 строки

Общее описание

Жидкокристаллический индикатор МТ-08S2A состоит из БИС контроллера управления и ЖК панели. Контроллер управления КБ1013BГ6, производства ОАО «АНГСТРЕМ» (www.angstrem.ru), аналогичен HD44780 фирмы HITACHI и KS0066 фирмы SAMSUNG. Индикатор выпускается со светодиодной подсветкой. Внешний вид приведен на рисунке 1. Индикатор позволяет отображать 2 строки по 8 символов. Символы отображаются в матрице 5х8 точек. Между символами имеются интервалы шириной в одну отображаемую точку.

Рис. 1

Каждому отображаемому на ЖКИ символу соответствует его код в ячейке ОЗУ индикатора.

Индикатор содержит два вида памяти — кодов отображаемых символов и пользовательского знакогенератора, а также логику для управления ЖК панелью.

Габаритные размеры индикатора приведены на рисунке 7.

Внимание! Недопустимо воздействие статического электричества больше 30 вольт.

Индикатор позволяет

- индикатор имеет программно-переключаемые две страницы встроенного знакогенератора (алфавиты: русский, украинский, белорусский, казахский и английский; см. табл. 5 и 6).
- работать как по 8-ми, так и по 4-х битной шине данных (задается при инициализации);
- принимать команды с шины данных (перечень команд приведен в таблице 4);
- записывать данные в ОЗУ с шины данных;
- читать данные из ОЗУ на шину данных;
- читать статус состояния на шину данных (см. табл. 4);
- запоминать до 8-ми изображений символов, задаваемых пользователем;
- выводить мигающий (или не мигающий) курсор двух типов;
- управлять контрастностью и подсветкой;

Основные сведения

Модуль управляется по параллельному 4-х или 8-ми битному интерфейсу.

Временные диаграммы приведены на рис. З и 4, динамические характеристики приведены в таблице 2.

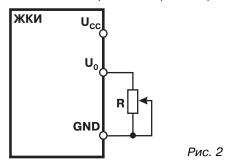
Примеры обмена по интерфейсу приведены на рис. 5 и 6.

Программное управление осуществляется с помощью системы команд, приведенной в таблице 4.

Перед началом работы индикатора необходимо произвести начальную установку.

Встроенный знакогенератор приведен в таблицах 5 и 6.

Индикатор позволяет задать изображения восьми дополнительных символов знакогенератора, использующихся при работе наравне со встроенными. Пример задания дополнительных символов приведен в таблице 3.


Таблица 1. Динамические характеристики индикатора.

Название	Обозна-	U _{cc}	=5B	U _{CC} =3B		Единицы	
пазвание	чение	Мин.	Макс.	Мин.	Мин. Макс. измере		
Время цикла чтения/записи	t _{cycE}	500	_	1000	_	ns	
Длительность импульса разрешения чтения/записи	PW _{EH}	230	-	450	_	ns	
Время нарастания и спада	t _{Er} , t _{Ef}	_	20	_	25	ns	
Время предустановки адреса	t _{AS}	40	-	60	-	ns	
Время удержания адреса	t _{AH}	10	_	20	-	ns	
Время выдачи данных	t _{DDR}	_	120	-	360	ns	
Время задержки данных	t _{DHR}	5	_	5	-	ns	
Время предустановки данных	t _{DSW}	80	_	195	_	ns	
Время удержания данных	t _H	10	_	10	_	ns	

Управление контрастностью

Для 5В индикаторов вывод U_{O} нужно подключать к выводу GND, а для 3В индикаторов вывод U_{O} нужно оставлять неподключенным.

Для изменения контрастности используется внешний переменный резистор R номиналом 10кОм.

Характеристики индикатора по постоянному току

Таблица 2. Характеристики индикатора по постоянному току.

Название		Обозна-		U _{CC} =5B			U _{CC} =3E	Единицы	
		чение	Мин.	Ном.	Макс.	Мин.	Ном.	Макс.	измерения
Напряжение питания		U _{CC}	4,5	5,0	5,5	2,7	3,0	3,6	В
Ток потребления		I _{CC}	_	0,6	0,8	_	0,6	0,8	мА
Входное напряжение высокого уровня при	кодное напряжение ысокого уровня при I _{IH} =0,1мА U _{IH}		2,2	_	U _{CC}	2,2	_	U _{CC}	В
Входное напряжение низкого уровня при I _I	одное напряжение зкого уровня при I _{IL} =0,1мА		-0,3	-	0,6	-0,3	-	0,4	В
Выходное напряжени высокого уровня при	U _{OH}	2,4	_	_	2,0	-	-	В	
Выходное напряжени низкого уровня при I _C	U _{OL}	-	-	0,4	-	-	0,4	В	
Ток подсветки при напряжении питания подсветки =U _{CC}	для янтарной и желто-зеленой	I _{LED}	_	60	_	_	60	_	мА
	для голубой и белой	I _{LED}	_	45	_	_	45	-	мА

Временные диаграммы

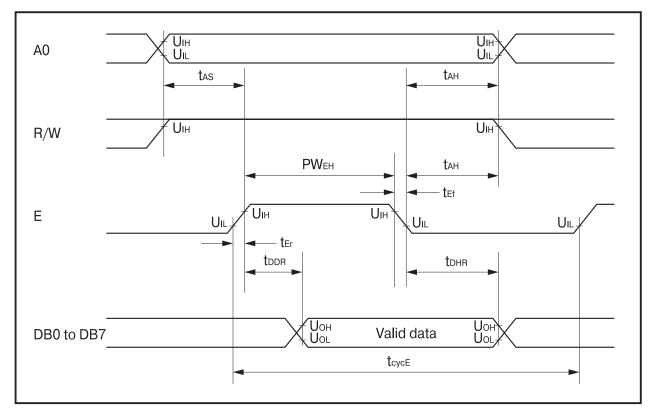


Рис. 3. Диаграмма чтения

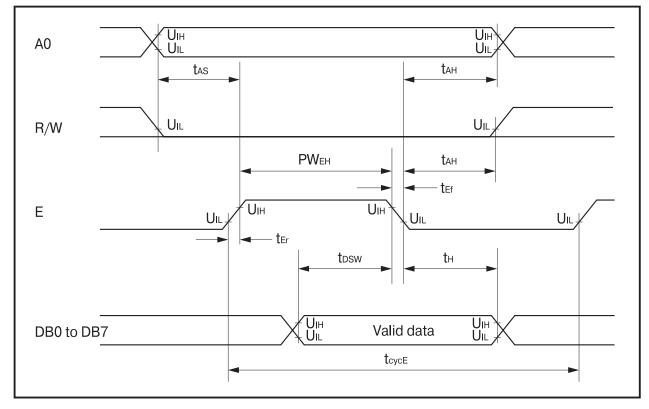


Рис. 4. Диаграмма записи

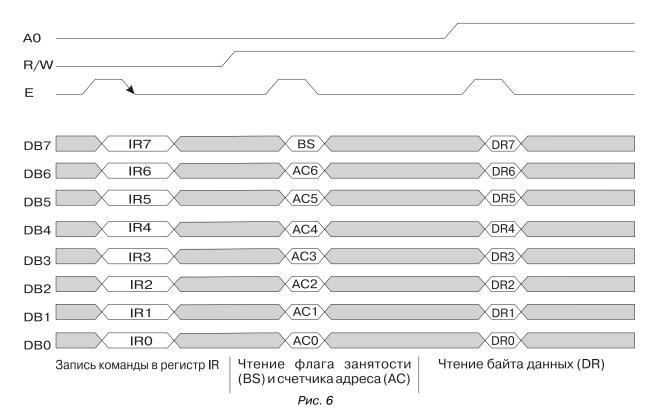

Диаграмма обмена по 4-х битному интерфейсу

Рис. 5

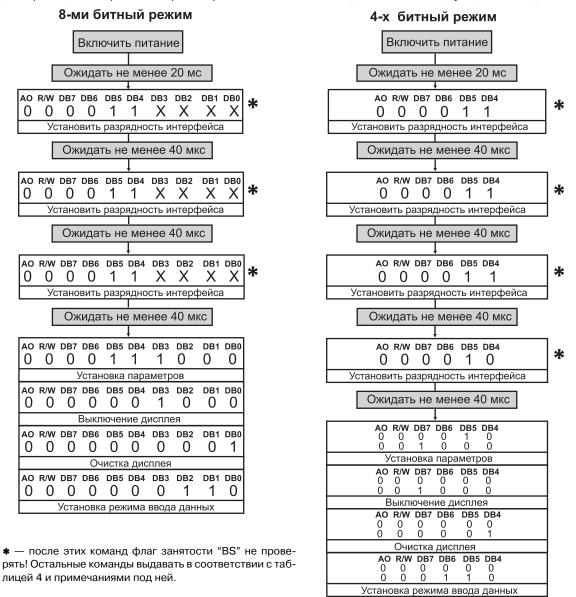

Примечание. В каждом цикле обмена необходимо передавать (читать или писать) все 8 бит — два раза по 4 бита. Передача старших 4-х бит без последующей передачи младших 4-х бит **не допускается**.

Диаграмма обмена по 8-ми битному интерфейсу

Начальная установка индикатора

Индикатор войдет в нормальный режим работы только после подачи на него следующих команд:

Примечание. Назначение битов указано в таблице 4.После этих действий индикатор переходит в рабочее состояние с установленными параметрами.

Распределение ОЗУ

Индикатор содержит ОЗУ размером 80 байтов по адресам 0h-27h и 40h-67h для хранения данных (DDRAM), выводимых на ЖКИ. Адреса отображаемых на ЖКИ символов распределены следующим образом:

Nº 3ı	1	2	3	4	5	6	7	8	
Д	1-я строка	0h	1h	2h	3h	4h	5h	6h	7h
E	2-я строка	40h	41h	42h	43h	44h	45h	46h	47h

Символы, программируемые пользователем

Индикатор содержит память для хранения изображений восьми символов, программируемых пользователем (СGRAM). Коды этих восьми символов показаны в табл. 5. Адреса строк изображений этих символов не зависят от адресов выводимых символов (расположены в отдельном адресном пространстве) и занимают адреса от 0h до 3Fh. Каждый символ занимает 8 байтов (0h–7h, 8h–Fh, 10h–17h, ..., 30h–37h, 38h–3Fh). Нумерация байтов идет в порядке отображения на индикаторе сверху вниз (первый байт самый верхний, восьмой байт самый нижний). Последняя, восьмая строка используется также для отображения курсора (если выбран курсор в виде подчеркивания). В каждом байте используются только 5 младших битов (4, 3, 2, 1, 0), старшие 3 бита (7,6,5) могут быть любые, на отображение они не влияют. Бит 4 соответствует левому столбцу матрицы символа, бит 0 — правому столбцу символа. Пример см. в таблице 3.

Таблица 3.

Код символа	Адрес в знакогенераторе	Значения в знакогенераторе	
7 6 5 4 3 2 1 0	5 4 3 2 1 0	7 6 5 4 3 2 1 0	
0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1	* * * * 1 1 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1 1 1 0 1 0 1 0	Изображение первого символаПозиция для курсора
0 0 0 0 0 0 0 1	0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 0 1 1 1 1 0	* * * * 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 1 0 0 1 1 1 1	 Изображение второго символа Позиция для курсора
	0 0 0 0 0 0 1	* * *	
0 0 0 0 0 1 1 1	1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1	* * *	

^{* -} значение не влияет на отображение

Описание команд индикатора

Таблица 4.

Команда	A0	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Описание	Время выпол- нения
Clear Display	0	0	0	0	0	0	0	0	0	1	Очищает индикатор и помещает курсор в самую левую позицию	1,5 мс
Return Home	0	0	0	0	0	0	0	0	1	Х	Перемещает курсор в левую позицию	40 мкс
Entry Mode Set	0	0	0	0	0	0	0	1	ID	SH	Установка направления сдвига курсора (ID=0/1—влево/вправо) и разрешение сдвига дисплея (SH=1) при записи в DDRAM	40 мкс
Display ON/OFF control	0	0	0	0	0	0	1	D	С	В	Включает индикатор (D=1) и выбирает тип курсора (C, B), см. примечание 4	40 мкс
Cursor or Display Shift	0	0	0	0	0	1	SC	RL	Х	Х	Выполняет сдвиг дисплея или курсора (SC=0/1—курсор/дисплей, RL=0/1—влево/вправо)	40 мкс
Function Set	0	0	0	0	1	DL	1	0	Р	0	Установка разрядности интерфейса (DL=0/1—4/8 бита) и страницы знакогенератора Р	40 мкс
Set CGRAM Address	0	0	0	1		ACG					Установка адреса для последующих операций (и установка туда курсора) и выбор области CGRAM	40 мкс
Set DDRAM Address	0	0	1		ADD						Установка адреса для последующих операций и выбор области DDRAM	40 мкс
Read BUSY flag and Address	0	1	BS	AC						Прочитать флаг занятости и содержимое счетчика адреса	0	
Write Data to RAM	1	0		WRITE DATA							Запись данных в активную область	40 мкс
Read Data from RAM	1	1		READ DATA						Чтение данных из активной области	40 мкс	

Примечания:

- 1. Указанное время выполнения команд является максимальным. Его не обязательно выдерживать при условии чтения флага занятости BS — как только флаг BS=0, так сразу можно писать следующую команду или данные. Если же флаг ВЅ перед выдачей команд не проверяется — необходимо формировать паузу между командами не менее указанного времени для надежной работы индикатора.
- 2. При чтении бита статуса никакую паузу делать не надо.
- 3. Большая X любое значение (0 или 1).
- 4. Биты С и В в команде «Display ON/OFF control»:
 - С=0, В=0 курсора нет, ничего не мигает;
 - С=0, B=1 курсора нет, мигает весь символ в позиции курсора; С=1, B=0 курсор есть (подчёркивание), ничего не мигает;

 - С=1, В=1 курсор есть (подчёркивание) и только он и мигает.

Таблица 5. Страница 0 встроенного знакогенератора.

Старшая цифра кода символа (в шестнадцатеричном виде)

Младшая цифра кода символа (в шестнадцатеричном виде)

Таблица 6. Страница 1 встроенного знакогенератора.

Старшая цифра кода символа (в шестнадцатеричном виде)

Младшая цифра кода символа (в шестнадцатеричном виде)

Таблица 7. Назначение внешних выводов.

Вывод	Обозначение	Назначение вывода
1	GND	Общий вывод (0В)
2	UCC	Напряжение питания (5В/3В)
3	Uo	Управление контрастностью
4	A0	Адресный сигнал — выбор между передачей данных и команд управления
5	R/W	Выбор режима записи или чтения
6	E	Разрешение обращений к индикатору (а также строб данных)
7	DB0	Шина данных (8-ми битный режим)(младший бит в 8-ми битном режиме)
8	DB1	Шина данных (8-ми битный режим)
9	DB2	Шина данных (8-ми битный режим)
10	DB3	Шина данных (8-ми битный режим)
11	DB4	Шина данных (8-ми и 4-х битные режимы)(младший бит в 4-х битном режиме)
12	DB5	Шина данных (8-ми и 4-х битные режимы)
13	DB6	Шина данных (8-ми и 4-х битные режимы)
14	DB7	Шина данных (8-ми и 4-х битные режимы) (старший бит)

Подключение подсветки

На плате индикатора для подключения подсветки от напряжения питания U_{CC} имеются два элемента J2 и J3. Установка перемычки на элемент J2 обеспечивает соединение U_{CC} с анодом подсветки через резистор. Установка перемычки на элемент J3 обеспечивает соединение GND с катодом подсветки.

Габаритные размеры индикатора МТ-08S2A

История изменений

Версия документа	Дата	Изменения	Страница
1.0	21/01/2008	Первая редакция документа	

Компания МЭЛТ

Наши координаты

🖂 Адрес: Москва, Андроновское шоссе, д. 26, корп. 5

Т тел/факс: (495) 662–44–14 (многоканальный)

e-mail: sales@melt.com.ru
http://www.melt.com.ru

Авторские права © 2008 МЭЛТ. Все права защищены. Принципиальные схемы и топология печатных плат, описанных в этом документе, не могут быть скопированы или воспроизведены в любой форме или любыми средствами без предварительного письменного разрешения компании МЭЛТ.

Информация, содержащаяся в этом документе, может быть изменена без предварительного уведомления. Компания МЭЛТ не несет ответственности за любые ошибки, которые могут появиться в этом документе, ровно как и за прямые или косвенные убытки, связанные с поставкой или использованием настоящей информации. Самые последние спецификации Вы всегда можете получить на нашем сервере в интернете по адресу http://www.melt.com.ru

Компания МЭЛТ непрерывно работает над улучшением качества и надежности наших изделий. Однако, изделия, содержащие полупроводники, могут частично или полностью потерять свою работоспособность вследствие воздействия статического электричества или механических нагрузок. Поэтому при использовании наших продуктов следует избегать ситуаций, в которых сбой или отказ изделий компании МЭЛТ, могут вызвать потерю человеческой жизни, а также ущерб или повреждение собственности.

Подписано в печать 21 января 2008 года. Формат A4. Отпечатано в России.

