OPB804

Electronics

Features:

- Non-contact switch
- PCB mount
- Wide aperture
- · Opaque body to minimize sensitivity to ambient light

Description:

OPB804 is a non-contact optical switch with a NPN silicon phototransistor and infrared Light Emitting Diode (LED) which are mounted on opposite sides of a 0.155" (3.94 mm) wide slot.

The device body is a single molded piece opaque plastic that reduces ambient light interference. A wide open aperture makes it versatile for general applications. LED emissions are near-infrared (850 – 940nm).

Applications:

- Non-contact object sensing
- Assembly line automation
- Machine automation
- Equipment security
- Machine safety

OPB804

Electrical Specifications

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Change Tanagarahan Dagara	40%C t 400% C
Storage Temperature Range	-40°C to +100° C
Operating Temperature Range	-40°C to +85° C
Lead Soldering Temperature	260° C ⁽⁵⁾
Input Diode	
Input Diode Power Dissipation	75 mW ⁽⁷⁾
Input Diode Forward D.C. Current, T _A = 25°C	50 mA ⁽⁷⁾
Input Diode Peak Forward Pulse Current, $T_A = 25$ °C (1 μ s pulse width, 300pps)	1 A
Phototransistor	
Power Dissipation	100 mW ⁽⁷⁾
Collector - Emitter Voltage	30V
Emitter - Collector Voltage	5.0V

Electrical Characteristics ($T_A = 25$ °C)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS	
Input Diode (see OP140 or OP240 for additional information)							
V _F	Forward Voltage	-	1.25	1.70	V	I _F = 20 mA	
I _R	Reverse Current	-	-	-	-	Not designed for reverse operation	

Output Phototransistor (see OP550 for additional information)

V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30	1	1	٧	$I_C = 1 \text{ mA}, E_E = 0 \text{ mw/cm}^2$
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0	-	-	٧	$I_E = 100 \mu A, E_E = 0 \text{ mw/cm}^2$
I _{CEO}	Collector Dark Current	-	-	100	nA	$V_{CE} = 10 \text{ V}, I_F = 0, E_E = 0 \text{ mw/cm}^2$

Coupled

V _{CE(SAT)}	Collector-Emitter Saturation Voltage	-	-	0.40	V	$I_C = 250 \mu\text{A}, \ I_F = 20 \text{mA}$
I _{C(ON)}	On-State Collector Current	0.5	5	-	mA	$V_{CE} = 10 \text{ V}, I_F = 20 \text{ mA}$

Notes:

- (1) Dot indicates # 3 collector lead side.
- Feature controlled at body. (2)
- Cathode lead may be shorter. (3)
- (4) RMA flux recommended. Highly activated water soluble fluxes may attack plastic. Recommend trial to verify application.
- Maximum lead soldering temperature .060" [1.6mm] from case for 5 seconds with soldering iron.
- Plastic is soluble in chlorinated hydrocarbons and ketones. Methanol or isopropanol are recommended as cleaning agents. (6)
- (7) Derate linearly 1.67 mW/°C above 25° C.
- (8) All parameters tested using pulse techniques.
- Do not connect input diode directly to a voltage source without an external current limiting resistor.
- (10) Do not apply reverse voltage to LED. LED will be a 0V in reverse voltage and draw current as if a short.

General Note

Performance

OPB804 - Flag in Middle of Slott

Issue	Change Description	Approval	Date
1.0	Initial Revision	B. Nunley	1/1/80
2.0	Update for Out Source Discrete devices	Mark Miller	3/31/03
A	Revised to new template format. Required changes on all pages.		12/02/05
A.1	Removed component parts charts (2 pages). Fixed issue, date and page number in footer. Added new .jpg logo to master page and ROHS symbol to first page.		01/23/06
A.2	Updated sheet 1 and graphs		04/04/06
A.3	Clarify package outline "dot". Update notes.	Mark Miller	03/10/10
В	Delete Reverse D.C. from Absolute Maximum Ratings chart and delete limits from the IR test under Electrical Characteristics.	Mark Miller	06/15/12

Issue B 11/2016 Page 4