

Open107V User Manual

Contents

1.	Overview					
	1.1.	What's on board	2			
2.	Demo					
	2.1.	8IOs	4			
	2.2.	ADC+DMA	5			
	2.3.	ADC+DMA+KEYPAD	5			
	2.4.	CAN- Normal	6			
	2.5.	DAC	6			
	2.6.	ETH_LwIP	7			
	2.7.	GPIO LED JOYSTICK	7			
	2.8.	I2C	8			
	2.9.	LCD	8			
	2.10.	One-Wire	9			
	2.11.	PS2	9			
	2.12.	RTC	. 10			
	2.13.	FATFS V0.08A-SD Card	. 10			
	2.14.	SL811 USB	.11			
	2.15.	AT45DB-SPI	.11			
	2.16.	TouchPanel	. 12			
	2.17.	uCOSII2.91+UCGUI3.90A	. 12			
	2.18.	USART	.13			
	2.19.	USB_Host_HID_KBrd_Mouse	.13			
	2.20.	USB_Host_MSC(efsl)	. 14			
	2.21.	USB_Host_MSC(FATFS)	. 14			
	2.22.	USB-JoyStickMouse	. 15			
	2.23.	USB-Mass_Storage-MCU Flash	. 15			
	2.24.	VS1003B	.16			
3.	Revis	ion history	.16			

Wave http://www.wvshare.com

1. Overview

1.1. What's on board

[MCU]

1. STM32F107VCT6

the high performance STM32 MCU which features:

Core: Cortex-M3 32-bit RISC;

Operating Frequency: 72MHz,1.25 DMIPS/MHz;

Operating Voltage: 2-3.6V;

Package: LQFP100; I/Os: 80;

Memories: 256kB Flash, 64kB RAM;

Communication Interfaces: 3 x SPI, 3 x USART, 2 x UART, 2 x I2S, 2 x I2C; 1 x Ethernet MAC, 1 x USB OTG, 2 x CAN; **AD & DA converters:** 2 x AD (12-bit, 1µs,

[Other component]

- Power supply switch 5V DC or USB
- 4. Power indicator
- LEDs
 Convenient for indicating I/O status or program running state
- 6. Reset button
- User key Convenient for indicating I/O status or program running state
- 8. **Joystick** Convenient for I/O input (five positions)
- 9. 32.768K crystal oscillator

shares 16 channels); 2 x DA (12-bit) **Debugging/Programming**: supports JTAG/SWD (serial wire debug) interfaces,

supports IAP

2. AMS1117-3.3

3.3V voltage regulator

[Interface]

11. Ethernet Interface

easily connects the MCU to Ethernet network by using an additional Ethernet module

12. 8 I/O Interface

easily connects to keypad, motor, etc.

13. CAN1 Interface

communicates with accessory boards which feature the CAN device conveniently

14. CAN2 Interface

communicates with accessory boards which feature the CAN device conveniently

15. SPI1/SPI2 Interface

easily connects to SPI peripherals such as DataFlash (AT45DBxx), SD card, MP3, etc. SPI1 features AD/DA alternative function, supports connecting AD/DA module as well

16. I2C1/I2C2 interface

easily connects to I2C peripherals such as I/O expander (PCF8574), FRAM (FM24CLxx), etc.

17. LCD Interface

easily connects to the touch screen LCD

18. ONE-WIRE Interface

easily connects to ONE-WIRE devices (TO-92 package), such as temperature sensor (DS18B20), electronic registration number (DS2401), etc.

19. PS/2 Interface

easily connects to PS/2 keyboard or mouse

20. USART1 Interface

easily connects to RS232, RS485, USB TO 232;

21. USART2 Interface

easily connects to RS232, RS485, USB TO 232;

22. USB OTG

for internal RTC

10. 25M crystal oscillator

[Other interfaces]

23. 5V DC jack

24. 5V/3.3 V power input/output

usually used as power output, also common-grounding with other user board

25. MCU pins connector

all the MCU pins are accessible on expansion connectors for further expansion;

26. JTAG/SWD interface

for debugging/programming;

[Jumper]

23. Boot Mode Selection

for configuring the BOOT0 and BOOT1 pins;

24. USB OTG Selection Jumper

Short the jumper to enable USB OTG, connects to MCU I/O

Open the jumper to disable USB OTG, disconnects from MCU I/O

25. PS/2 Interface Jumper

Short the jumper to connect the PS/2 device to default I/Os;

Open the jumper to connect the PS/2 device to custom I/Os via DuPont wires;

26. LEDs Jumper

Short the jumper to connect the LEDs to default I/Os;

Open the jumper to connect the LEDs to custom I/Os via DuPont wires;

27. VBAT Selection Jumper

Short the jumper to use system power supply; Open the jumper to connect the VBAT to external power, such as battery;

Communicating with USB Device or USB Host

2. Demo

- ➢ KEIL MDK Version: 4.54
- Programmer/Debugger: ULINK/V2
- > Programming/Debugging interface: JTAG/SWD
- Result of demos which based on serial port are all checked via SSCOM32, default connection is connect the serial port converter to the USART1 interface.
- > Serial port assistant SSCOM3.2 settings:

Select a proper COM port				
Baud rate	115200			
Data bits	8			
Stop bits	1			
Parity bits	None			
Flow control	None			

2.1. 8IOs

Overview

8I/Os demo, detect the 8 independent button is pressed or not

Hardware connection

Connect the "8 Push Button " to the onboard 8I/Os interface (make sure the G pin on the module connects to the GND pin on the 8I/Os)

Operation and result

Push the button, the LED will keep blinking accordingly.

2.2. ADC+DMA

Overview

AD acquisition demo, gather voltage information of Analog Test Board

Hardware connection

Connect the Analog Test Board to the board via SPI1 (ADC+DAC) interface

- Operation and result
- Rotate the potentiometer on the Analog Test Board, the below information will be printed on the serial debugging assistant:

****	******	(xxx)	*****	cici	*****	****	****	****	c www.	****	****	*****
The	current	AD	value	=	2.36V							
The	current	AD	value	=	2.36V							
The	current	AD	value	=	3. 30V							
The	current	AD	value	=	2.83V							
The	current	AD	value	=	0.72V							
The	current	AD	value	=	0.01V	1						
The	current	AD	value	=	0.01V							

2.3. ADC+DMA+KEYPAD

Overview

AD acquisition demo, gather voltage information of AD Keyboard

Hardware connection

Connect the AD Keypad board to the board via SPI1 (ADC+DAC) interface

- Operation and result
- Press the button on the AD Keypad, the below information will be printed on the serial debugging assistant:

The current AD value = 1.0264V The current AD value = 1.2319V The current AD value = 2.6837V The current AD value = 2.4750V

Wave http://www.wvshare.com

2.4. CAN- Normal

- Overview
 CAN1 TO CAN2 communication demo
- Hardware connection

- Two "SN65HVD230 CAN Board" are required, connect them to two Open103C board respectively
- Connect the two "SN65HVD230 CAN Board" via DuPont wire(CANL<->CANL, CANH<->CANH)

- Operation and result
 - > The below information will be printed on the serial debugging assistant:

2.5. DAC

- Overview
 DA output demo, output via DMA channel
- Hardware connection

- Connect the Analog Test Board to the board via SPI1 (ADC+DAC) interface
- Connect the 5V pin headers on both the main board and the Analog Test Board via jumper wire

- Operation and result
 - > You should hear sound from the Analog Test Board

2.6. ETH_LwIP

- Overview
 - The board communicates with the PC via Internet
- Hardware connection

 Connect the DP83848 Ethernet Board to the board via SPI1 (ADC+DAC) interface

The IP of the PC configuring as 192.168.0.xxx; for example:
 Configuring IP of both the PC and the module on the same network:
 Bight diak the [Internet] [Internet] [Internet]

Right click the 【Internet】 -》 【Properties】 -》 Click 【Local connection】 -》 Click 【Properties】 -》 Find Internet Protocol Version4 (TCP/IP V4, the following dialog box will pop up, set the appropriate IP address, subnet mask, and default gateway:

- IP addresses :
 192.168.0.138

 Subnet Mask:
 255.255.255.0

 Default Gateway:
 192.168.0.1
- Operation and result

Open the browser; enter 192.168.0.100/888; press the Enter key:

2.7. GPIO LED JOYSTICK

- Overview
 Change the LED status via button, joystick
- Hardware connection
 Short the LED JMP, JOYSTICK JMP, KEY JMP

Operation and result

Push the button or joystick, the LED status should keep changing accordingly

2.8. I2C

Overview

Read and write data on E2PROM via I2C protocol

Hardware connection

 Connect the AT24/FM24 Board to the board via I2CX interface(connect to I2C1 or I2C2 depends on the program)

Operation and result

> The below information will be printed on the serial debugging assistant:

2.9. LCD

- Overview
 Control the LCD via FSMC
- Hardware connection

> Connect the 3.2inch 320x240 Touch LCD (A) to the board

- Operation and result
 - > Display image on the LCD:

User Manual

2.10. One-Wire

- Overview
 Connect the DS18B20 board; detect the temperature
- Hardware connection

Connect the DS18B20 to the onboard One-wire socket.

Operation and result

The below information will be printed on the serial debugging assistant:

2.11. PS2

- Overview
 Drive the PS2 keyboard via two GPIO
- Hardware connection

- Connect the PS2 keyboard to the board via PS2 interface
- Short the PS2 JMP.

• Operation and result

The below key value will be printed on the serial debugging assistant while push keys the PS2 keyboard:

2.12. RTC

- Overview
 Development board RTC demo
- Hardware connection

Connect a serial port converter to the onboard USART2 interface

Operation and result

The below information will be printed on the serial debugging assistant:

```
External Reset occurred....
No need to configure RTC....
Time: 2012-1-1 00:00:08
Time: 2012-1-1 00:00:09
Time: 2012-1-1 00:00:10
Time: 2012-1-1 00:00:11
```

2.13. FATFS V0.08A-SD Card

Overview

Read information in the SD card; SD card is FAT file system

Hardware connection

- Connect the Micro SD Storage Board (with SD card) to the board via SPI1 interface
- Connect the CD pin header of Micro SD Storage Board to the PB0 pin header on the board via DuPont wire

Operation and result

The below information will be printed on the serial debugging assistant:

SD card detected OK	
Card Type	: SD V2
Card Type	: SD V2
Card Type	: SD V2

2.14. SL811 USB

- Overview
 - Operate low speed USB via "SL811 USB Board"
- Hardware connection

Connect the SL811 USB Board to the board via 8BIT+FSMC interface

- Operation and result
 - > The serial debugging assistant read information in the USB flash disk
 - > The below information will be printed on the serial debugging assistant:

```
hip revision: OE

Please connect USB device...

USB Low speed device !!!

hip revision: AE

Please connect USB device...

USB Full speed device detected

Device descriptor :

10 C3 C3 C4 C4 C5 C5 C6 10 CE CE CF CF D0 D0 D1 20 D8

Configuration descriptor :

10 F3 F3 F4 F4 F5 F5 F6 10 FE FE 10 11 12 13 14

10 24 25 26 27 28 29 2A 10 3A 3B 3C 3D 3E 3F 40
```

2.15. AT45DB-SPI

Overview

Drive AT45DBXX DataFlash Board via SPI interface

Hardware connection

 Connect the AT45DBXX DataFlash Board to the board via SPIX interface(connect to SIP1 or SPI2 depends on the program)

• Operation and result

The below information will be printed on the serial debugging assistant:

2.16. TouchPanel

Overview
 Control LCD via FSMC, display touch function of the LCD

÷

Hardware connection

- > Connect the board to 5V power via 5VDC interface
- > Connect the ULINK2 board to the board via SWD interface
- Connect the 3.2inch 320x240 Touch LCD (A) to the board
- Operation and result
 Calibrate the LCD first, then touch it, draw any line on it.

2.17. uCOSII2.91+UCGUI3.90A

- Overview
 UcosII+GUI demo
- Hardware connection

- Operation and result
 Display image on the LCD:
- > Connect the 3.2inch 320x240 Touch LCD (A) to the board

2.18. USART

- Overview
 - USART serial port communication demo
- Hardware connection
- Operation and result

The below information will be printed on the serial debugging assistant:

Waveshare!	
Waveshare!	
Waveshare!	

2.19. USB_Host_HID_KBrd_Mouse

Overview

Mouse demo, the development board works as USB host

Hardware connection

- Connect the mouse to the board via OTG cable.
- Connect the 3.2inch 320x240 Touch LCD (A) to the board

- Operation and result
 - > The green dot in the middle of the LCD will move accordingly while moving the mouse:

2.20. USB_ Host_MSC(efsl)

Overview

USB flash drive demo, the development board works as USB host

Hardware connection

- Connect the USB flash drive to the board via OTG cable.
- Connect the 3.2inch 320x240 Touch LCD (A) to the board

- Operation and result
 - > The picture in BMP format will display on the LCD.

2.21. USB_Host_MSC(FATFS)

Overview

USB flash drive demo, the development board works as USB host

Hardware connection

- Operation and result
 - > The picture in BMP format will display on the LCD.

2.22. USB-JoyStickMouse

- Overview
 Mouse demo, the development board works as USB device to control the mouse
- Hardware connection
 - > Connect the board to the PC through USB cable
- Software configuration
- Operation and result
 An USB device will appear on the PC device manager
 Control the computer cursor by joystick

2.23. USB-Mass_Storage-MCU Flash

Overview

USB flash drive demo, the development board Open103C works as USB device to control the mouse

- Hardware connection
 - > Connect the board to the PC through USB cable

- Connect the USB flash drive to the board via OTG cable
- Connect the 3.2inch 320x240 Touch LCD (A) to the board

- Software configuration
- Operation and result
 An USB device and a removable disk will appear on the PC device manager:

2.24. VS1003B

- Overview
 Play Music via VS1003B module
- Hardware connection

Connect the "VS1003B MP3 Board" to the onboard SPI interface

- Operation and result
 - ·VS1003 (GPIO): P0 LED keep blinking
 - ·VS1003 (line in): can hear music from the PC
 - ·VS1003 (line out): can hear music from the MCU FLASH
 - ·VS1003 (record): can hear sound from the microphone

3. Revision history

Version	Description	Date	Author
V1.0	Initial revision	2014/05/17	Waveshare team