

# EVAL-ADM1075MEBZ User Guide

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

#### **ADM1075** Mini Evaluation Kit User Guide

#### **FEATURES**

Mini evaluation kit for the ADM1075
Supports LFCSP device package
Input voltage range of −30 V to −75 V
PMBus™ communication supported
Isolated PMBus interface for −48 V operation
Special N-MOSFET footprint to accommodate different
FET packages

Supports up to 2 sense resistors in parallel
Supports up to 2 field effect transistors (FETs) in parallel
Toggle and push-button switches for easy input control
LED indicated status outputs
Smaller board compared with EVAL-ADM1075EBZ

#### **EVALUATION KIT CONTENTS**

EVAL-ADM1075MEBZ mini evaluation board EVAL-ADM1075-ISOZ isolation board 8-way, 150 mm Micro-MaTch ribbon cable

#### **ADDITIONAL EQUIPMENT NEEDED**

USB-to-serial I/O interface USB-SDP-CABLEZ

#### **REQUIRED SOFTWARE**

Analog Devices hot swap and power monitoring evaluation software (download from www.analog.com/hotswaptools)

#### **GENERAL DESCRIPTION**

The ADM1075 mini evaluation board (EVAL-ADM1075MEBZ) is a compact, reduced feature version of the ADM1075 evaluation board (EVAL-ADM1075EBZ) for the ADM1075-1ACPZ and ADM1075-2ACPZ devices.

The mini evaluation board is designed to power up with a 15 A current limit, a 300  $\mu F$  load capacitance, and a minimum of 24  $\Omega$  load resistance.

Two sense resistor footprints and two FET footprints provide users with flexibility and allow them to simulate a wide range of application setups.

Multiple test points allow easy access to all critical points and pins. There is one LED to provide users with a direct visual indication of IC power good output.

The EVAL-ADM1075MEBZ board is fully compatible with the EVAL-ADM1075EBZ evaluation software tool, which can be downloaded from www.analog.com/hotswaptools.

Users need a USB-SDP-CABLEZ USB-to-I<sup>2</sup>C dongle to use the evaluation software tools. The Micro-MaTch ribbon cable is required if connecting the mini evaluation board to the isolation board (EVAL-ADM1075-ISOZ).

Complete specifications for the ADM1075 can be found in the ADM1075 data sheet, available at <a href="http://www.analog.com/">http://www.analog.com/</a>, and should be consulted in conjunction with this user guide when using the evaluation board.

#### **BOARD SETUP**



Figure 1.

# **TABLE OF CONTENTS**

| eatures                       |
|-------------------------------|
| Evaluation Kit Contents       |
|                               |
| Additional Equipment Needed   |
| Required Software             |
| General Description           |
| Board Setup                   |
| Revision History2             |
| Quick Start Guide             |
| Evaluation Board Description4 |
| EVAL-ADM1075MEBZ              |

| EVAL-ADM10/5-18OZ                      | (  |
|----------------------------------------|----|
| Evaluation Board Hardware              |    |
|                                        |    |
| Switch, Jumper, and LED Functions      |    |
| Test Plots                             | 9  |
| Evaluation Board Schematics and Layout | 10 |
| EVAL-ADM1075MEBZ                       | 10 |
| EVAL-ADM1075-ISOZ                      | 12 |
| Bill of Materials                      | 15 |
| EVAL-ADM1075MEBZ                       | 15 |
| EVAL ADM1075 ISO7                      | 1. |

#### **REVISION HISTORY**

#### 4/14—Rev. 0 to Rev. A

| Changes to | Evaluation Kit Contents | 1  |
|------------|-------------------------|----|
| Changes to | Figure 11               | 10 |
| Changes to | Table 11                | 15 |

#### 4/13—Revision 0: Initial Version

## **QUICK START GUIDE**

- Download the hot swap and power monitor software from www.analog.com/hotswaptools (see the UG-353 user guide for more information).
- 2. Connect the mini evaluation board (EVAL-ADM1075MEBZ) to the isolation board (EVAL-ADM1075-ISOZ) using the 8-way connector and a Micro-MaTch ribbon cable.
- Connect the isolation board (EVAL-ADM1075-ISOZ) to a PC through the 10-way connector and the USB-SDP-CABLEZ dongle. The blue LED, labeled ISO, on the isolation board illuminates.
- 4. Connect the power supply to the mini evaluation board (EVAL-ADM1075MEBZ) using thick wires.
- 5. To confirm that the boards are configured correctly, set the output of the power supply to 48 V with less than a 1 A current limit and with no load capacitance. If the boards are configured correctly, the green LEDs, labeled D\_PWRGD on the EVAL-ADM1075MEBZ and PWRGD on the EVAL-ADM1075-ISOZ, illuminate.
- 6. Press the RESTART push-button on the mini evaluation board (EVAL-ADM1075MEBZ). The green LEDs, labeled D\_PWRGD and PWRGD, both turn off, and then turn back on after 10 sec.

- 7. You can use the SHDN2 switch and SHDN push-button on the isolation board (EVAL-ADM1075-ISOZ) to turn off the hot swap.
- 8. If a latch event occurs (for example, a short circuit during operation), the red LED, labeled LATCH, illuminates on the isolation board (EVAL-ADM1075-ISOZ). The latch event can be cleared with a CLEAR FAULT PMBus command or by pressing the DELATCH push-button.
- Disable the hot swap using the Hot Swap Control section
  of the Basic Operation tab of the GUI. Disabling the hot
  swap should turn off the green LEDs (D\_PWRGD and
  PWRGD) on both the mini evaluation board and the
  isolation board.
- 10. Manually program the sense resistor value and the ADC input resistor divider values (for example,  $R_{\text{SENSE}} = 1.5 \text{ m}\Omega$ , ADC top = 200 k $\Omega$ , ADC bottom = 2.8 k $\Omega$ ). There is no EEPROM available on the mini evaluation board (EVAL-ADM1075MEBZ); therefore, these values must be programmed each time the software GUI is opened.
- 11. Check that the voltage and current measurements are as expected in the **Power Monitor** tab of the software GUI.

# **EVALUATION BOARD DESCRIPTION**

The EVAL-ADM1075MEBZ is designed to demonstrate several features of the ADM1075. It is used in conjunction with the isolation board to provide a fully isolated solution. A simplified drawing of the mini evaluation board and isolation board combination is shown in Figure 2.

The mini evaluation board (EVAL-ADM1075MEBZ) is connected to the isolation board (EVAL-ADM1075-ISOZ) using a Micro-MaTch cable and is connected to a PC using a USB-SDP-CABLEZ dongle for isolated  $\rm I^2C$  communication.

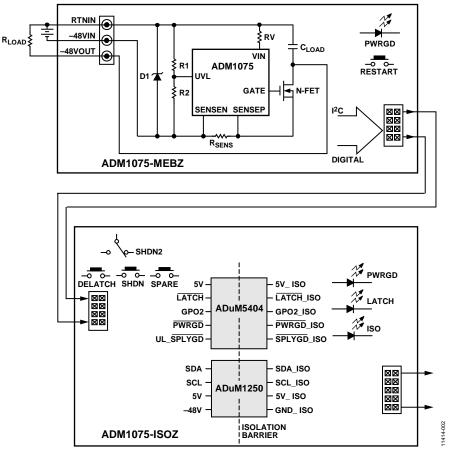



Figure 2. Basic Block Diagram

#### **EVAL-ADM1075MEBZ**

The ADM1075 mini evaluation board (EVAL-ADM1075MEBZ) is shown in Figure 3.

Thick wires should be used between the power supply and the EVAL-ADM1075MEBZ board connector to minimize inductance. The D\_PWRGD LED illuminates green after the board is powered and the ADM1075 GATE pin is high (FET fully enhanced). Pressing the RESTART push-button triggers a shutdown that lasts for 10 sec.

The board is intended to be plugged into a system where load capacitance already exists. Two through-hole vias are provided to allow the placement of a load capacitor on the board when

testing the board outside of a real system. All testing performed on the board was done with a 330  $\mu F$  load capacitor.

The EVAL-ADM1075MEBZ uses a 470 nF timer capacitor to maintain a 10 ms FET safe operating area. The undervoltage and overvoltage thresholds were set using resistor dividers to achieve the values shown in Table 1. A resistor divider was also used on the ISET pin to set the current limit to approximately 15 A. The constant power level was set to the maximum allowable level for the FET safe operating area to allow power-up in one attempt. These values can all be fine-tuned further if necessary. Isolation is required in most –48 V applications because there is a large ground potential difference between the –48 V section of the board and a PC or microcontroller.

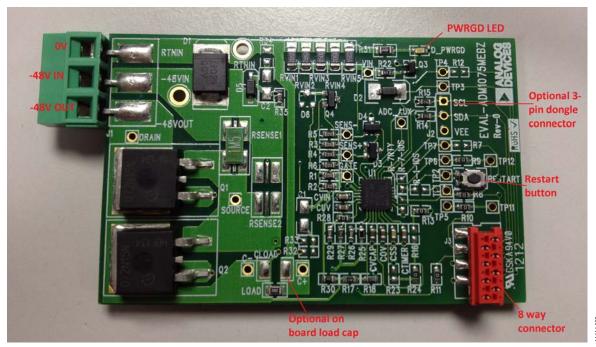



Figure 3. EVAL-ADM1075MEBZ Board

#### **Specifications**

Table 1.

| Parameter                                       | Min   | Тур   | Max   | Unit |
|-------------------------------------------------|-------|-------|-------|------|
| Undervoltage Rising Threshold, V <sub>UVH</sub> | -34.0 | -35.0 | -36.0 | V    |
| Undervoltage Falling Threshold, Vuvl            | -30.6 | -31.5 | -32.4 | V    |
| Overvoltage Rising Threshold, V <sub>OVR</sub>  | -70.3 | -72.4 | -74.6 | V    |
| Overvoltage Falling Threshold, V <sub>OVF</sub> | -68.9 | -71.4 | -74.0 | V    |
| Trip Current                                    | 12.1  | 12.75 | 13.4  | Α    |
| Regulation Current                              | 12.9  | 13.3  | 13.8  | Α    |
| Constant Power Level                            | 127   | 135   | 142   | W    |

#### **EVAL-ADM1075-ISOZ**

The ADM1075 isolation board (EVAL-ADM1075-ISOZ) includes the following isolators:

- The ADuM1250 is used to demonstrate the I<sup>2</sup>C isolation and the digital signal.
- The ADuM5404 provides quad-channel digital isolation with *iso*Power\*. When the isolated section is powered, the *iso*Power device powers the 5 V components on the primary side of the board.

The push-buttons and switch on the isolation board (EVAL-ADM1075-ISOZ) allow the user to control the mini evaluation board (EVAL-ADM1075MEBZ). The three on-board LEDs provide users with a direct visual indication of IC power good, latch event occurrence, and 5 V power supply from USB-SDP-CABLEZ. The 8-way connector is used to connect the mini evaluation board (EVAL-ADM1075MEBZ) to the isolation board (EVAL-ADM1075-ISOZ), and the 10-way connector is used with the USB-SDP-CABLEZ dongle to connect the isolation board (EVAL-ADM1075-ISOZ) to a PC.

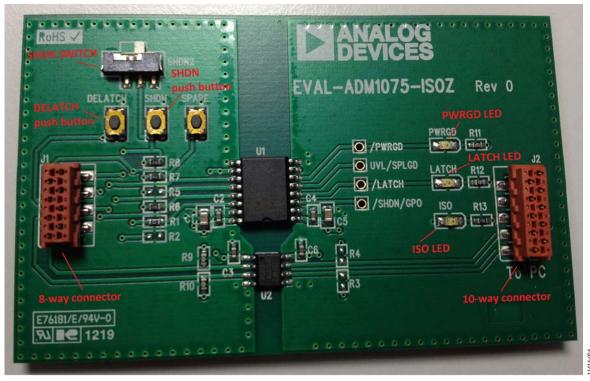



Figure 4. EVAL-ADM1075-ISOZ Board

# **EVALUATION BOARD HARDWARE**

## **SWITCH, JUMPER, AND LED FUNCTIONS**

#### **EVAL-ADM1075MEBZ**

#### **Table 2. Connector Functions**

| Connector     | Description                                                                                                                           |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------|
| RTNIN, -48VIN | Hot swap line voltage inputs that also power the board components. The input voltage ranges from $-30 \text{ V}$ to $-75 \text{ V}$ . |
| -48VOUT       | Hot swap line voltage output.                                                                                                         |
| J3            | 8-way connector; use a Micro-MaTch ribbon cable to connect to an EVAL-ADM1075-ISOZ isolation board.                                   |

#### **Table 3. Switch Functions**

| Switch  | Description                                                     |
|---------|-----------------------------------------------------------------|
| RESTART | Push-button switch to trigger a shutdown that lasts for 10 sec. |

#### **Table 4. LED Functions**

| LED     | Description               |
|---------|---------------------------|
| D_PWRGD | PWRGD, active low; green. |

#### Table 5. On-Board ICs

| IC | Description      |
|----|------------------|
| U1 | ADM1075 main IC. |

### **Table 6. Retry Configuration**

|                                         |               | Bill of Materials Component |               |  |
|-----------------------------------------|---------------|-----------------------------|---------------|--|
| Retry Scheme                            | R-7RTY        | R-1-10S                     | R-7-10S       |  |
| No Retries (Latch Off)                  | Not populated | Not populated               | Not populated |  |
| Seven Retries, Then Latch Off (Default) | 0 Ω           | Not populated               | Not populated |  |
| One Retry Every 10 sec                  | Not populated | 0 Ω                         | Not populated |  |
| Seven Retries Every 10 sec              | Not populated | Not populated               | 0 Ω           |  |

# **UG-548**

#### **EVAL-ADM1075-ISOZ**

#### **Table 7. Connector Functions**

| Connector | Description                                                                              |
|-----------|------------------------------------------------------------------------------------------|
| J1        | 8-way connector; use a Micro-MaTch ribbon cable to connect to an EVAL-ADM1075MEBZ board. |
| J2        | 10-way connector; use a USB-SDP-CABLEZ dongle to connect to a PC.                        |

#### **Table 8. Switch Functions**

| Switch  | Description                                                                                                                                                                                                                                                                                                       |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SHDN2   | Toggle switch to shut down hot swap. Right = hot swap enabled; left = hot swap disabled.                                                                                                                                                                                                                          |
| SHDN    | Push-button switch to generate a shutdown. This push-button can be used to clear faults. Note that SHDN has a retry counter capable of counting up to seven shutdown events. After seven shutdown events, GPO2 goes active low, and then a restart or clear via a PMBus is required to enable the hot swap again. |
| DELATCH | Push-button switch to clear a latch event after seven shutdown events.                                                                                                                                                                                                                                            |
| SPARE   | Push-button switch connected to GPO1_TP.                                                                                                                                                                                                                                                                          |

#### **Table 9. LED Functions**

| LED   | Description                                              |
|-------|----------------------------------------------------------|
| PWRGD | PWRGD, active low; green.                                |
| LATCH | TATCH, active low; red.                                  |
| ISO   | 5 V power supply from USB-SDP-CABLEZ, active high; blue. |

#### Table 10. On-Board ICs

| IC | Description                                                         |
|----|---------------------------------------------------------------------|
| U1 | ADuM5404, quad-channel isolator with integrated dc-to-dc converter. |
| U2 | ADuM1250 dual I <sup>2</sup> C isolator.                            |

# **TEST PLOTS**




Figure 5. Power Up; Test Points Are as Follows: Channel  $1 = V_{IN}$  (Yellow), Channel 2 = GATE (Pink), Channel  $3 = V_{DS}$  (Blue), Channel 4 = System Current (Green), M1 = FET Power (CH2 × CH4) (Orange)

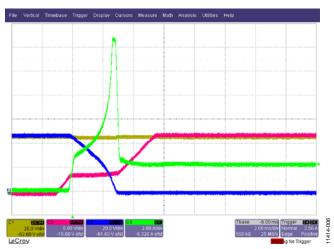



Figure 6. Power Up into 24  $\Omega$  Resistive Load; Test Points Are as Follows: Channel 1 =  $V_{IN}$ , Channel 2 = GATE, Channel 3 =  $V_{DS}$ , Channel 4 = System Current

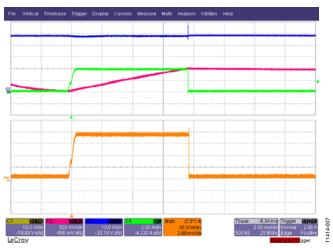



Figure 7. Power Up into a Fault Condition; Test Points Are as Follows: Channel =  $V_{IN}$ , Channel 2 = TIMER, Channel 3 =  $V_{DS}$ , Channel 4 = System Current, Math Channel = FET Power



Figure 8. Timer Cycle at Power-Up; Test Points Are as Follows: Channel 1 =  $V_{IN}$ Channel 2 = TIMER, Channel 3 =  $V_{DS}$ , Channel 4 = System Current

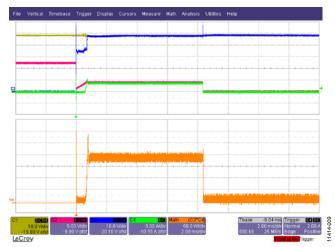



Figure 9. Short-Circuit Event; Test Points Are as Follows: Channel 1 =  $V_{IN}$ , Channel 2 = GATE, Channel 3 =  $V_{DS}$ , Channel 4 = System Current, Math Channel = FET Power

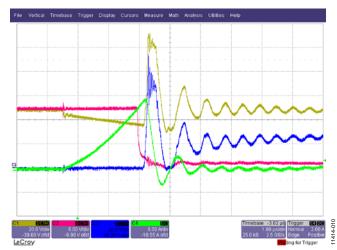



Figure 10. Short Circuit (Zoom); Test Points Are as Follows: Channel  $1 = V_{IN}$ , Channel 2 = GATE, Channel  $3 = V_{DS}$ , Channel 4 = System Current

# **EVALUATION BOARD SCHEMATICS AND LAYOUT**

## **EVAL-ADM1075MEBZ**

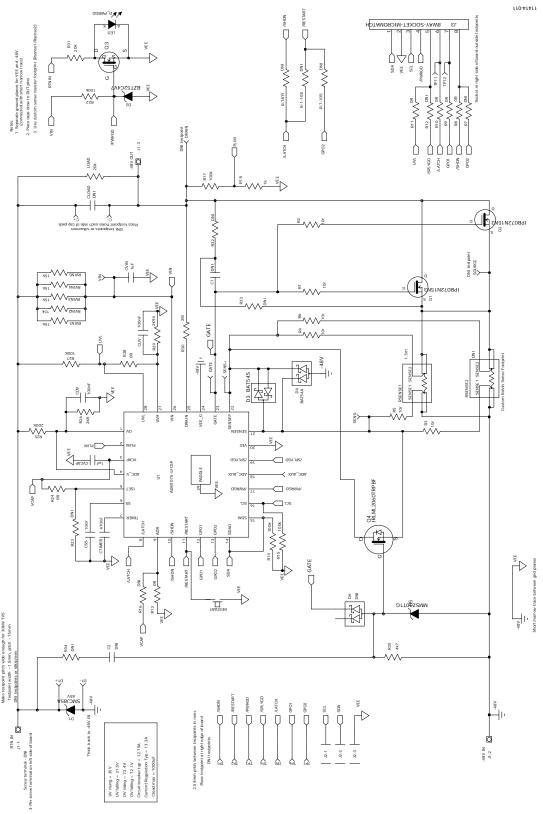



Figure 11. EVAL-ADM1075MEBZ Schematic

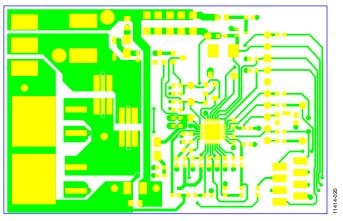



Figure 12. Top Layer

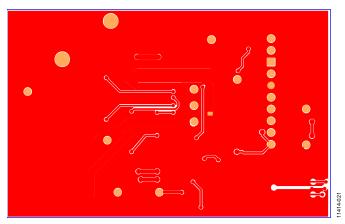



Figure 13. Inner Layer 2

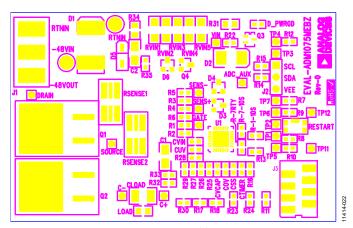



Figure 14. Assembly Top

#### **EVAL-ADM1075-ISOZ**

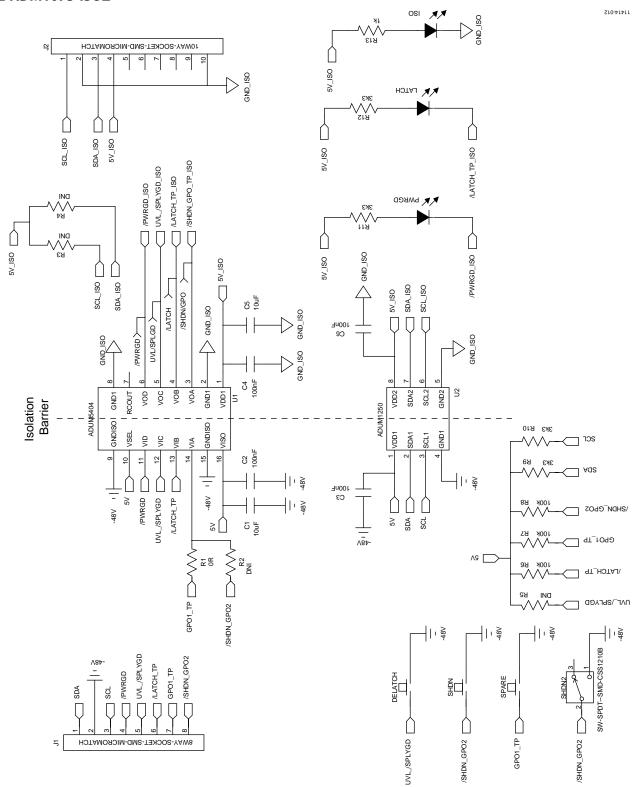



Figure 15. EVAL-ADM1075-ISOZ Schematic

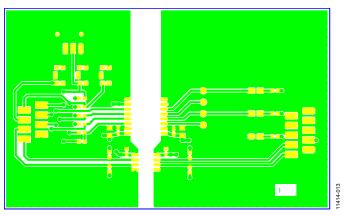



Figure 16. Top Layer

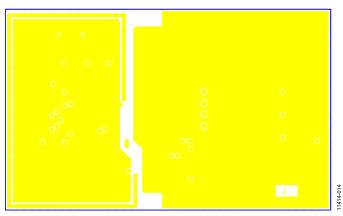



Figure 17. Inner Layer 2

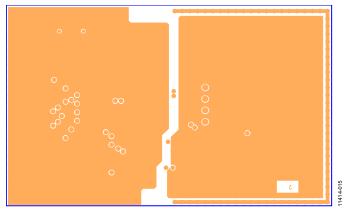



Figure 18. Inner Layer 3

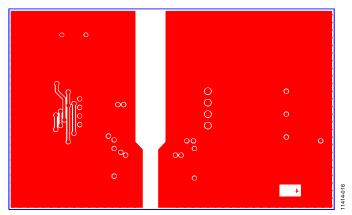



Figure 19. Bottom Layer

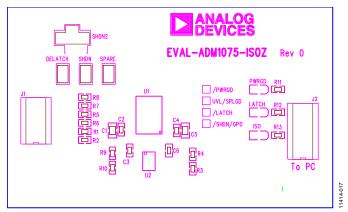



Figure 20. Assembly Top

# **BILL OF MATERIALS**

# **EVAL-ADM1075MEBZ**

Table 11. EVAL-ADM1075MEBZ Bill of Materials

| Designator               | Description                                 | Part/Order Code                               |
|--------------------------|---------------------------------------------|-----------------------------------------------|
| C1, C2                   | Capacitor                                   | Do not insert                                 |
| CLOAD                    | Capacitor                                   | Do not insert                                 |
| COV CUV                  | Capacitor, 100 nF                           | Farnell 1692286                               |
| CSS                      | Capacitor, 10 nF                            | Farnell 1639964                               |
| CTIMER                   | Capacitor, 470 nF                           | Farnell 1828894                               |
| CVCAP                    | Capacitor, 1 μF                             | Farnell 1288256                               |
| CVIN                     | Capacitor, 1 μF                             | Farnell 1650836                               |
| D1                       | Diode, SMCJ85A, 85 V                        | Digi-Key SMCJ85ABCT-ND                        |
| D2                       | Diode, Zener, 4.7 V                         | Farnell 1902435                               |
| D3                       | Diode, Schottky, BAT54S                     | Farnell 1467519                               |
| D4                       | Diode, Schottky, BAT54A                     | Farnell 1228222                               |
| D6                       | Diode                                       | Do not insert                                 |
| D5                       | Diode, Zener                                | Farnell 1431256                               |
| D_PWRGD                  | LED                                         | Farnell 1219743                               |
| GL1                      | Ground link                                 | N/A                                           |
| J1                       | Connector/Power 3                           | Farnell 151790                                |
| J2                       | 3-pin header                                | Do not insert                                 |
| J3                       | 8-way socket Micro-MaTch                    | Digi-Key A99475CT-ND                          |
| LOAD, R31                | Resistor, 20 kΩ                             | Farnell 1894202                               |
| Q1, Q2                   | MOSFET, N-channel, 150 V, 100 A, PG-TO263-3 | Farnell 1775544                               |
| Q3                       | MOSFET, N-channel, 3-SC-70                  | Farnell 1470156                               |
| Q4                       | MOSFET, N-channel, 60 V, 1.2 A, SOT-23      | Farnell 1791578                               |
| R-1-10S, R-7-10S, R-7RTY | Resistor                                    | Do not insert                                 |
| R1 to R6                 | Resistor, $10 \Omega$                       | Farnell 1738878                               |
| R7, R12, R16, R23        | Resistor                                    | Do not insert                                 |
| R8 to R11, R13, R24, R28 | Resistor, 0 Ω                               | Farnell 9331662                               |
| R14, R15                 | Resistor, 100 kΩ                            | Farnell 9330402                               |
| R17                      | Resistor, 100 k $\Omega$                    | Farnell 1750700                               |
| R18                      | Resistor, 1 kΩ                              | Farnell 9330380                               |
| R22                      | Resistor, 100 k $\Omega$                    | Farnell 9331719                               |
| R25                      | Resistor, 200 kΩ                            | Farnell 1894148                               |
| R26                      | Resistor, 2.8 kΩ                            | Farnell 1170832                               |
| R27                      | Resistor, 100 k $\Omega$                    | Farnell 1750700                               |
| R29                      | Resistor, 2.94 kΩ                           | Farnell 1170835                               |
| R30                      | Resistor, 2 M $\Omega$                      | Farnell 1469773                               |
| R32 to R34               | Resistor                                    | Do not insert                                 |
| R35                      | Resistor, 4.7 kΩ                            | FEC 9331247                                   |
| RESTART                  | Switch, 2.8 mm × 3.8 mm, vertical push      | Farnell 1605470                               |
| RSENSE1                  | Sense resistor, 2512, 1.5 m $\Omega$        | Farnell 1292507                               |
| RSENSE2                  | Sense resistor, 2512                        | Do not insert                                 |
| RVIN1 to RVIN5           | Resistor, 15 k $\Omega$                     | Farnell 1739028                               |
| U1                       | Hot swap controller                         | Analog Devices ADM1075-1ACPZ or ADM1075-2ACPZ |

#### **EVAL-ADM1075-ISOZ**

Table 12. EVAL-ADM1075-ISOZ Bill of Materials

| Designator           | Description                                   | Part/Order Code             |
|----------------------|-----------------------------------------------|-----------------------------|
| C1, C5               | Capacitor, 10 μF                              | Farnell 1288204             |
| C2 to C4, C6         | Capacitor, 100 nF                             | Farnell 1692286             |
| DELATCH, SHDN, SPARE | Switch, 2.8 mm $\times$ 3.8 mm, vertical push | Farnell 1605470             |
| ISO                  | LED                                           | Farnell 8529876             |
| J1                   | 8-way socket SMD Micro-MaTch                  | Digi-Key A99475CT-ND        |
| J2                   | 10-way socket SMD Micro-MaTch                 | Digi-Key A99476CT-ND        |
| LATCH                | LED                                           | Farnell 1328348             |
| PWRGD                | LED                                           | Farnell 1226376             |
| R1                   | Resistor, 0 Ω                                 | Farnell 9331662             |
| R2 to R5             | Resistor                                      | Do not insert               |
| R6 to R8             | Resistor, 100 kΩ                              | Farnell 2008342             |
| R9 to R12            | Resistor, 3.3 kΩ                              | Farnell 9332022             |
| R13                  | Resistor, 1 kΩ                                | Farnell 2008335             |
| SHDN2                | SPDT switch SMD                               | Digi-Key 563-1091-2-ND      |
| U1                   | Quad-channel isolator                         | Analog Devices ADuM5404ARWZ |
| U2                   | Hot swappable dual I <sup>2</sup> C isolator  | Analog Devices ADuM1250ARZ  |



#### FSD Caution

**ESD** (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

#### Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD INCLUDING BUT NOT LIMITED TO LOST PROFITS. DELAY COSTS LARGE COSTS OR LOSS OF GOODWILL ADI'S TOTAL LIARII ITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS (\$100.00). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

©2013–2014 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

UG11414-0-4/14(A)



www.analog.com